Nonmitogenic survival-enhancing autocrine factors including cyclophilin A contribute to density-dependent mouse embryonic stem cell growth.
نویسندگان
چکیده
An improved understanding of the role of extracellular factors in controlling the embryonic stem cell (ESC) phenotype will aid the development of cell-based therapies. While the role of extracellular factors in controlling the pluripotency and differentiation of embryonic stem cells (ESCs) has been the subject of much investigation, the identity and role of extrinsic factors in modulating ESC growth under conditions supporting self-renewal remain largely unknown. We demonstrate that mouse ESC (mESC) growth is density dependent and that one of the mechanisms underlying this phenomenon is the action of survival-enhancing autocrine factors. Proteomic analysis of proteins secreted by mouse ESCs demonstrates significant levels of cyclophilin A which increases the growth rate of mouse ESCs in a dose-dependent manner. Additionally, inhibition of the cyclophilin A receptor CD147 decreases the growth rate of mESCs. These findings identify cyclophilin A as a novel survival-enhancing autocrine factor in mouse ESC cultures.
منابع مشابه
Non-Mitogenic Survival-Enhancing Autocrine Factors Including Cyclophilin A Contribute to Density-Dependent mESC Growth
An improved understanding of the role of extracellular factors in controlling the embryonic stem cell (ESC) phenotype will aid the development of cell-based therapies. While the role of extracellular factors in controlling the pluripotency and differentiation of embryonic stem cells (ESCs) has been the subject of much investigation, the identity and role of extrinsic factors in modulating ESC g...
متن کاملComputational model and microfluidic platform for the investigation of paracrine and autocrine signaling in mouse embryonic stem cells.
Autocrine and paracrine signaling mechanisms are traditionally difficult to study due to the recursive nature of the process and the sub-micromolar concentrations involved. This has proven to be especially limiting in the study of embryonic stem cells that might rely on such signaling for viability, self-renewal, and proliferation. To better characterize possible effects of autocrine and paracr...
متن کاملEffects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells
Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...
متن کاملEffect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells
Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stem cell research
دوره 6 2 شماره
صفحات -
تاریخ انتشار 2011